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LETTER TO THE EDITOR 
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$ Department of Physics, Banam Hindu University, Varanasi 221 005, India 
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Abstract. The observations related to capillxity made during space Rights are explained 
theoretically. This is achieved by using (i) Young's expression for the contact angle to predict 
the changing shape ofthe meniscus and (ii) the Poiseuille-Peiris-Tennakone formula to calculate 
the speed of the rising column. 

In a recent study essay Sally Ride [l] has vividly described many interesting extraterrestrial 
observations involving surface tension which have been noted in a gravity-free zone realised 
during space flights. In particular, (i) liquids coalesce into spheres, (ii) a drip would never 
fall out of a leaky faucet, (iii) near-normal dining with rehydrated food is possible in space, 
(iv) liquids crawl up a drinking straw and collect in a large drop-a sphere-at the opening 
of the straw, etc. Upon going through this essay it occurred to us that items (ifi(iii) are 
essentially self-evident in the absence of gravity. Also, with regard to item (iv) it is expected 
that for g + 0 the conventional equilibrium height h + bo, i.e., the liquid will go on rising 
up to the top of the sli-aw; however, no theoretical explanation has been offered in the 
literature as far as the formation of a sphere at the opening of the straw is concerned. 
Obviously, in view of the importance of space flights a theoretical description of item (iv), 
i.e., capillarity in a gravity-free zone, is worth undertaking. The present letter accomplishes 
this task. 

The formulation of the problem at hand may be conveniently made in terms of 
the interplay among the adhesive force A and the tensions TLV, TSV and TSL of the 
liquid-vapour, solid-vapour, and solid-liquid interfaces [Z, 31 respectively. From a logical 
viewpoint the full adhesive force, being a contact force, has a normal component viz. A 
and also a parallel component which is hidden in the symbol TSV. For the sake of ready 
reference, let us recapitulate the conditions for these forces to be in equilibrium. Figure l(a) 
shows these forces acting on a small element of the liquid situated at the junction of the 
interfaces and having unit length perpendicular to the plane of the diagram. Resolving these 
forces parallel and perpendicular to the solid surface, one finds that the said element will 
be in equilibrium if 

A = TLV sin0 ( 1 4  
TLV  COS^ = Tsv - TSL (1b) 

where 6' is the equilibrium contact angle. Since (I), known as Young's equation [3], will 
 be of crucial importance in our formalism some pertinent comments on the same are in 
order. (la) yields the value of the adhesive force while (Ib) may be regarded as defining 
the equilibrium contact angle in terms of TSL. TSV and TLV. Typical values of the interfacial 
tensions are reproduced in table 1 to give an idea of their numerical orders of magnitude. 
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Clearly, as long as the interfaces have a nonzero area the contact angle is acutdobtuse for 
Tsv > / < TSL. However, due to geometrical considerations an exceptional case may arise 
when the area of the solid-vapour interface becomes zero. Then, although the value of TSV 
(which is the free energy per unit area) remains finite the role of the solid-vapour interface 
disappears from (Ib) implying that an initially acute 8 becomes obtuse. Finally, although 
(Ib) was derived for the equilibrium case it also provides a useful guideline to specify the 
acuteness or obtuseness of the nonequilibrium contact angle for a moving liquid column 
which will be encountered below. 

Tsv z -ax is  

Figure 1. (a) A diagram showing the forces A. Trv, Tsv and TSL acting on it small element 
of the fluid situated at the junction of the interfaces. (b) A diagram showing a capillary tube 
dipped vertically into a liquid with its lower end just touching the free surface. The contact 
angle B and the time dependent rise L are marked. 

Table 1. Parameters in the Young equations (in newions p” metre) at room temperature (31. 
Here the solid is assumed to be mica and V represents the vapour of the liquid mentioned. 

Liquid Tsv TSL TLV 
- 

Water 0.183 0.107 0.073 
Hexane 0.271 0.255 0.018 

Suppose a long capillary tube of length L and inner radius r is dipped (see figure I(b)) 
vertically into a liquid of surface tension T TLV, contact angle 0 ( c x / 2 ) ,  density p and 
viscosity 11 such that the lower tip of the tube just touches the free surface of the liquid. Let 
z denote the height of the liquid column above the free surface measured at time t ,  and let 
i dz/dt denote its speed. A solution to the hydrodynamical problem of capillary motion 
under the simultaneous influence of surface tension, gravity and viscosity was attempted by 
the present authors [4J in 1987 using the Newton law for variablemass systems coupled 
with an nd hoc assumption about the velocity gradient at the wall of the tube. However, 
since the assumption of the no-slip condition at the wall is more appropriate, one may prefer 
to employ the Poiseuille formula for the velocity as was done by Peiris and Tennakone [5 ] .  
Putting g = 0 their formula reads 

i = (rT COS8)/4172. (2) 
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Numerically, for the case of water the relevant typical parameters are as follows: 

p = IO3 kg m-3 

r = m q = lo-' N s m-' (34 
L = lo-' m T = 0.07 N m-'. 

The output Poiseuille-Peins-Tennakone speeds zrop at the top of the tube become 

zrop = 0.175 m s-' for 0 = 0 (36) 
zrop = 0.166 m s-' for 0 = 18". (3d 

These two cases correspond to pure water-clean glass and tap water-ordinary glass systems 
[6], respectively. 

We now proceed to an explanation of Sally Ride's observation. As soon as the tube is 
dipped into water the liquid will start rising rapidly upwards because of the force which the 
wall exerts on the liquid. The meniscus during this process will remain concave upwards 
and its speed will be given by (2). Since there is no hindrance from gravity, the column 
will go on rising until the meniscus approaches the upper tip of the tube. Geometrical 
considerations now become important. As the liquid fills the complete inner volume of the 
tube the veaical solid-vapour film disappears so that the contact angle tends to change from 
an acute to obtuse value as mentioned above. Now, due to inertia the column overshoots 
the tip and also star ts  spreading over it because of the reappearance of the solid-vapour 
interfacial tension now acting in the horizontal direction. This spreading is expected to 
be rapid and nonstreamline so the kinetic energy gained by the liquid head will be partly 
dissipated in overcoming viscosity. Of course, during the horizontal spreading the directions 
of various interfacial tensions have changed compared to their directions during the rising 
stage mentioned above. Two cases need to be distinguished at this juncture depending upon 
the thickness of the wall. 

If the tube has a rather thin wall the spreading liquid overshoots even the outer periphery 
P (see figure 2(a)) of the tube and the subsequent events happen in a manner analogous 
to the discussion after (1). That is, as the solid-vapour interface effectively disappears 
the contact angle changes from acute to obtuse momentarily as the liquid turns around 
P. This is followed by a small spreading on the outer surface of the straw resulting in a 
final equilibrium configuration of the liquid head subject to the following requirements: (i) 
in order to have minimum surface area the liquid takes a predominantly spherical shape 
truncated by the outer periphery of the tube, and (ii) exactly at the junction of the three 
interfaces there will be a slight distortion of the spherical geometq of the drop in order to 
allow for the retrieval of the standard contact angle given by (1). This is consistent with 
the observations reported by Sally Ride [I] during space flights. 

One may wonder what is the size of the blob so formed. To answer this, we recall 
that the liquid column had the kinetic energy fnr2Lpz~op just before crossing the top of 
the tube. This kinetic energy is mostly converted into the surface energy Es (say) of the 
blob and a smaller part E" (say) is dissipated due to viscosity. First, let us calculate Es 
by remembering that, in figure Z(a), the spherical blob of radius R is truncated by the outer 
periphery of the capillary tube with outer radius rout. Multiplying the surface area of this 
truncated sphere by T and equating it to the kinetic energy of the liquid column, we obtain 

(4) n[4~2  - r:vt - o ( ~ : ~ J R ~ ) ] T  = +r2Lpi?,. 

Inclusion of the comparatively smaller contribution from E" will alter (4) somewhat in a 
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Figwe 2. The rise of water in a capillary tube when gravity is absent. (a) the wall of the tube 
is rather thin and the liquid forms a sphere around the tip. The outer periphery is marked by 
the point P. (b) The wall of he tube is rather thick and the liquid comes to rest over the rim 
as shown. 

manner mentioned after the numerical estimates given below. Solving (4) we obtain 

where rout has been set equal to r for a thin tube. Next, let us derive an expression for Ev 
which is approximately equal to the product of the viscous drag force FV at the top of the 
tube and an additional vertical displacement AZ of the liquid head before coming to rest. 
Clearly, FV = SirqLi,, by Poiseuille's theory while AZ is of the order of R .  Multiplying 
them we arrive at 

Ev - 8irqLiropR. (6) 
Let us now turn to numerical estimates. Using the data of (3a-c) we obtain for B = 0, i.e., 
the pure water-ciean glass system 

R = 2.39 x m EV - 1.05 x J 

Es = 4.81 X IO-' J EvjEs  - 0.22. 

Next, for 0 = 18", i.e., the tap water-ordinary glass system 

R = 2.28 x m Ev - 9.51 x J 
Es = 4.33 X J Ev/Es  - 0.22. 

From (7a) and (7b) two important observations are made. Firstly, the ratio EvjEs  is about 
0.2. Thus, the kinetic energy will be converted into the sum Es + E" - 1.2Es and, in 
turn, this quantity will now appear on the left-hand side of (4). Since the radius of the 
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blob is proportional to the square root of its surface area. the new magnitude of R will be 
(I.Z)'/' - 0.9 times the values reported in (7u) and (7b). Secondly, the magnitude of R 
turns out to be more than twice the value of r which is expected for a thin tube. It may be 
added that the possibility of the liquid crawling back down the outside of the tube is remote 
because the sphere is the most stable configuration which has been formed satisfying energy 
conservation (cf. (4)). Also, one may wonder whether due to the reverse curvature of, and 
hence due to the excess pressure (2TIR) within, the drop the liquid will be pushed back 
down the tube! This, however, cannot happen because the drinks used by astronauts come 
in vacuum packed, plastic cartons with thin plastic tops [l] and the above mentioned excess 
pressure within the drop will not be able to overcome the tension of plastics. Therefore, the 
blob observed by Sally Ride is a stable configuration rather than a metastable one ignoring, 
of course, evaporation effects. 

If the outer radius of the tube is large compared to the radius parameter R defined in 
(5) the tube may be called a thick one. In such a case, the spreading water does not reach 
the outer periphery of the tube and it comes to rest with the liquid protruding out in the 
form of a spherical shell balancing over the rim as shown in figure 2(b). The equilibrium 
conditions are retrieved in the form (1) with the contact angle having become acute once 
again and the kinetic energy of the liquid head is mostly consumed into the surface energy 
of the protrusion. 

Thanks are due to P Khastgir for stimulating discussions and to the UGC for financial 
support. The authors are grateful to the referees for their constructive suggestions. 
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